Feel free to peruse our literature, including brochures, posters, videos, and background info!


Agile R100 Flyer


For a quick overview on Agile R100 key features, example data, and Agile Plus software, see this 2-page flyer!

Agile R100 Brochure


What can Agile R100 do? How does the technology work? What are some examples of measurements from the tool? See this overview brochure for answers!

Feature Highlight: Sense in Complex Samples: Solvents & Detergents



  • DMSO is often needed to keep high concentrations of small molecule compounds soluble during early stage drug discovery. This is a problem for common optical kinetic binding platforms, as DMSO negatively impacts optical properties.
  • Agile R100 leverages an orthogonal technology called Field Effect Biosensing (FEB), an electrical technique that is unaffected by changes in optical properties. The platform easily senses in optically challenging samples such as buffer containing 10% DMSO.
  • In this technical note, we share Agile R100 kinetic binding data (kon, koff, and KD) from the interaction of 3 small molecule compounds dissolved in 10% DMSO binding with their respective targets – 2 GPCRs solubilized in additional detergents and a cytokine protein.

Publication Highlight: 10x Greater Signal-to-Noise than BLI or ELISA



  • Zika viral antigen is measured using an Octet RED96, a Bio-layer Interferometry (BLI) platform, and Agile R100, an FEB platform, both of which provide kinetic binding data. Agile R100 shows detection at a concentration 10 times lower than on the Octet, while providing kinetic analysis in line with the BLI instrument.
  • Inflammatory protein IL-6 is measured with an Invitrogen ELISA kit and with Agile R100. Agile R100 lowered the limit of detection (LLOD) for IL-6 by a factor of 60 over the ELISA.
  • Agile R100 is an easy-to-use assay system that increases signal-to-noise (SNR) at ultra-low concentrations by 10 times over BLI, a typical kinetic characterization platform, and ELISA, a conventional tool for clinical diagnostics. With FEB, you have an affordable label-free technology that can be used throughout drug discovery and disease research to reduce data and assay translations across phases.

Publication Highlight: High Sensitivity and Detection in Serum



  • Agile R100 detected Zika viral antigen in buffer using monoclonal antibodies developed by the CDC at 18 ng/mL, an exceptional level of sensitivity unmatched by any portable device.
  • Additional measurements showed detection of Zika viral antigen in simulated human serum at a CV% in line with specs set by the Clinical Laboratory Standards Institute (CLSI). At 500 ng/mL, this represents the ability to detect clinically-relevant levels of antigen in serum.
  • Agile R100 is the only graphene-based portable biosensor of its kind. Its affordability, small size, high sensitivity, and ability to detect in serum make it an ideal on-site platform for PK/PD studies, and a candidate for development as an early-stage medical diagnostic test that can be run by the healthcare provider.


Direct Detection of Borrelia Burgdorferi Antigen Using Field Effect Biosensing (FEB) Technology


Presented at the Centers for Disease Control and Prevention (CDC) in Atlanta in 2016.
This poster depicts the detection of various concentrations of lysed Borrelia burgdorferi cells with AGILE R100.

Novel Graphene-based Biosensor for Early Detection of Zika Virus Infection


Presented at the CDC in Atlanta in 2017.

This poster shows measurements of Zika protein at 18 ng/mL sensitivity and additional measurements in serum at a clinically relevant level of sensitivity. It also shows specificity versus the Japanese Encephalitis virus, a potentially co-founding infection.

Agile R100: An Orthogonal Biosensing Tool for Structure Activity Relationship (SAR) Studies During Early Stage Drug Discovery


Presented at the Drug Discovery Chemistry Conference in San Diego in 2017.
This poster displays a simple SAR study performed with Agile R100 using TNFα as the immobilized target and three inhibitor compounds as analyte. The activity and affinity of the inhibitor compounds are quantified with dose-response curves and kinetic binding data.

Novel Protein Binding Kinetics Measurements in Complex Biological Samples Using Agile


Presented at the Experimental Biology Conference in San Diego in 2016.

This poster shows results from measurements directly from cell lysate, protein extract, growth media, tissue lysate, and undiluted plasma.

Agile Sensors Quantify Interactions in Challenging Samples for Drug Discovery


Presented at the Drug Discovery Chemistry Conference in San Diego in 2016.
This poster shows results from measurements with quantity-limited samples (50 µg of total protein) and at fM concentration.


Introducing Agile R100, a personal assay system for sensitive label-free kinetic binding data (2:05)

Welcome to Agile R100, the first personal assay system for label-free kinetic binding analysis of small molecules and proteins at your bench. Agile R100 is the perfect platform for drug discovery researchers who want to save time, cost, and resources. Designed specifically to validate hits, its single-sample format makes assays easy to run, with no complicated processes or systems to learn. If your goal is to get reliable, sensitive kinetic binding data early in the drug discovery process, see this video for an introduction to Agile R100.

A few key Agile R100 benefits you’ll see in this video:
– Sense in complex samples including detergents, solvents, cell fractions, tissue lysate
– Use just a 10 µL drop of sample
– 11-log dynamic range
– Easy to use
– Breakthrough, orthogonal technique for label-free kinetic binding data

Overview of Field Effect Biosensing (FEB), used in Agile R100 (1:30)

Field Effect Biosensing (FEB) is a breakthrough label-free technique for measuring biomolecular interactions in real-time. It provides valuable kinetic binding data and kinetic characterization of drug molecules, and it’s increasing the speed of drug discovery in R&D labs everywhere. Here’s how it works!

FEB is a unique orthogonal technology that detects when optical methods fail, and it can only be found with innovative personal benchtop assay Agile R100.

How to Use the Agile R100 Label-free Kinetic Binding Assay (7:30)

Welcome to Agile R100, the first personal assay system for label-free kinetic characterization of small molecules and proteins at your bench, and under your control. With an unprecedented 11-log dynamic range, Agile R100 is all you need to develop weakly-binding fragments into high-affinity compounds with accuracy and reliability.

Agile R100 has a microfluidic-free design that is easy to learn and use. Your 10 µL drop of sample is applied directly to the biosensor surface via a pipettor. In contrast to most label-free platforms, if you can run an ELISA, you can have the Agile R100 running in a matter of minutes.

This video provides an overview of how to run a kinetic binding measurement on the Agile R100 system, the analysis that Agile Plus software provides, and the principles of Field Effect Biosensing (FEB) on which Agile R100 is based.

Background Info

Solvent Correction: An Additional Reference Measurement for Biomolecular Interactions


Organic solvents induce large sensor responses in optical systems that can mask the lower magnitude sensor responses obtained from low molecular weight analyte. While solvent correction on optical systems allows for the subtraction of artifacts in a biomolecular kinetics data set arising from organic solvents, it requires carefully prepared reference samples, time to prepare these reference samples, and a dedicated reference cell. Field Effect Biosensing (FEB) does not require solvent correction because standard reference measurements can be taken in line with experiment samples, and the electrical nature of the sensing mechanism means solvents minimally affect the sensor response, dramatically reducing the need for extra sample preparation and tool run time.

Blocking and Quenching to Reduce Nonspecific Interactions in High Quality Biosensors


The sensitivity and specificity of a biosensor are directly related to the availability and functionality of immobilized capture molecules, but ambient compounds may also nonspecifically contribute to the sensor response, thereby decreasing the signal-to-noise ratio (SNR). Blocking and quenching steps are used in biosensors to reduce the contributions from background compounds that interfere with the measurement signal. Several aspects of biosensor functionalization can be optimized to drive down the effects of nonspecific interactions and increase the SNR for targeted detection, critical to sensing low concentrations of target analyte with low signal. This technical note demonstrates effective blocking and quenching techniques with Agile R100 biosensor chips to deliver sensitive and specific sensor responses with high SNR.

User Manuals

Agile R100 User Manual


Background detail about Field Effect Biosensing (FEB) technology and the Agile R100 system, experimental design, software setup, data acquisition, and data analysis.

Register to download:
We’d like to get to know you better! To download the literature below, please complete this one-time simple registration.

Application Notes

Reproducible Characterization of GPCR and Small Molecule Compound Interactions Using Agile R100


GPCRs are primary drug targets for therapeutic intervention in multiple disease models, but they are notoriously difficult to characterize due to their inherent instability upon purification. Prior kinetic binding techniques have substantial roadblocks in studying GPCRs, but in this application note, we present Agile R100’s success in quantifying these difficult compounds. Features of Agile R100 that enable successful detection GPCR interactions include: the ability to sense in complex samples containing detergents and solvents, a non-microfluidic format that allows the sample to be applied directly to the surface of the biosensor chip, temperature versatility, and low target concentration and small sample volume requirements.

Small Molecule Compounds in DMSO Binding with GPCR and TNFα


In this application note, we present Agile R100 kinetic binding data (kon, koff, and KD) from the interaction of 3 small molecule compounds dissolved in 10% DMSO binding with their respective targets – 2 GPCRs solubilized in additional detergents and a cytokine protein.

Detecting Interactions of Small Molecules in 10% DMSO Using Agile R100


Small molecules are beneficial as drug therapeutics but often have low solubility in aqueous solutions. Solvents such as dimethyl sulfoxide (DMSO) are necessary additives for small molecule solubility, but these solvents can interfere with optical biosensing platforms. In this technical note, Agile R100 successfully detects the interaction between the cytokine tumor necrosis factor alpha (TNFα) and the small molecule inhibitor SPD304 in 0%, 1%, 3%, and 10% DMSO. Because Agile R100 uses an electrical technique rather than an optical one, DMSO in buffer is compatible with the instrument and does not require solvent correction. Additionally, high concentrations of SPD304 (100 μM) were detected on Agile R100. Importantly, Agile R100 detects the association binding rate (ka) and the dissociation binding rate (kd) and can calculate the dissociation constant (KD) of the TNFα and SPD304 interaction in buffer with DMSO. Agile R100’s KD result (14.5 ± 1.8 μM in phosphate buffer saline [PBS] with 10% DMSO) is similar to a previously reported KD value (7.3 ± 0.5 μM in citrate phosphate buffer with 10% DMSO).

Affinity Ranking of SPD304, Evans Blue, and Trypan Blue to TNFα Using Agile R100


Affinity ranking is critical to optimizing the relationship between a target protein and a potential drug compound during the hit-to-lead optimization phase of drug discovery. In this application note, Agile R100 characterizes the activity of the target protein TNFα interacting with the small molecule drug compounds, SPD304, Evans Blue, and Trypan Blue in order to rank order by affinity.

Technical Notes

Kinetic Binding Analysis on Agile R100


Biosensors are used in a variety of fields to characterize biomolecular interactions in real-time. The results of these interaction studies inform the development of the next generation of diagnostics and therapeutics and provide insights into the mechanisms by which pathogens evolve and infect. Label-free assays are particularly useful in these endeavors because they eliminate both the chance of the added label interfering with the native binding chemistry and the additional chemistry steps to attach the label to the molecule under investigation. This technical note provides an overview of the kinetic binding data collected by Agile R100.

Reproducible Detection of Small Molecule Interactions Using Agile R100


In this technical note, Agile R100 detects the interaction between the cytokine tumor necrosis factor alpha (TNFα) and the small molecule inhibitor SPD304 with high reproducibility between independent replicate measurements. Agile R100 detects the association binding rate (ka) and the dissociation binding rate (kd) and calculates the dissociation constant (KD) of the TNFα and SPD304 interaction with minimal deviation between independent replicate measurements (CV < 20%).

How Nonspecific Binding is Prevented on Agile R100


To prevent nonspecific sensor responses during the experimental design, several different sensor functionalization chemistries are investigated on Agile R100, an assay that leverages Field Effect Biosensing (FEB) technology. The optimized sensor functionalization chemistry is used to demonstrate the biosensing capabilities of Agile R100 in complex media without the need for additional blocking steps, where Agile R100 demonstrates no loss of sensitivity to its target analyte in simulated serum compared to simple buffer.

Comparison Studies

Agile R100 versus MicroCal iTC200 Kinetic Binding Data


Agile R100 is a graphene biosensor with unprecedented functionality, providing label-free, real-time kinetic binding data. As a novel technology, Agile R100 is compared to MicroCal iTC200 to demonstrate its benefits compared to a standard kinetic binding analysis tool, isothermal titration calorimetry (ITC). In this study, kinetic binding data between the two instruments is compared by measuring Rho guanosine triphosphate hydrolase enzyme (GTPase) interacting with GTPase activating protein (GAP). The association and dissociation binding rate (ka and kd, respectively) and dissociation constants (KD) are reported. Agile R100 has a precise binding affinity measurement (KD = 1.35 ± 0.06 µM), comparable to MicroCal iTC200 (KD = 2.7 ± 0.3 µM), while also obtaining ka and kd values. Additionally, Agile R100 uses up to 30 million times less sample material and up to 30 times less sample volume and can perform 2.5 times more measurements in a given workday compared to MicroCal iTC200.


Intro to Kinetic Binding Data Guide


Need a quick refresher on kinetics? Our Intro to Kinetic Binding Data Guide is a short primer on kinetic and affinity data.